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Abstract: Procedures for data pre-processing, quality control, data analysis, 
evaluation and visualisation of the new high-throughput biomarker platform 
based on Printed Glycan Arrays (PGA) are presented in this paper. PGAs are 
similar in concept to DNA arrays but contain deposits of various carbohydrate 
structures (glycans) instead of spotted DNAs. PGA biomarker discovery for the 
early detection, diagnosis and prognosis of human malignancies and viral 
diseases is based on the response of the immune system as measured by the 
level of binding of anti-glycan antibodies from human serum to the glycans on 
the array. Procedures related to PGA data processing are herein demonstrated  
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in a pilot study of cases representing 50 sera from patients with malignant 
mesothelioma and a control sample of 65 sera from high risk subjects exposed 
to asbestos without symptoms of disease. 

Keywords: PGA; printed glycan arrays; serum antibodies; diagnosis and 
prognosis of cancers; malignant mesothelioma; bioinformatics; immunoruler; 
molecular biomarker discovery. 
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1 Introduction 

The early detection and diagnosis of cancers in their preclinical state before the disease 
exhibits symptoms is essential for successful treatment with existing therapeutic 
approaches, such as surgery, radiation, and chemotherapy. In addition, a quantitative and 
reliable prognostic measurement of cancer progression is vital for successful disease 
management and patient stratification (Trademark Publications, 2008). For these reasons 
the development of effective biomarkers for cancer detection, diagnosis and prognosis 
has become the ultimate goal of many biomedical researchers in academia, clinical 
institutions and the diagnostic industry. As a result, the last two decades have 
concentrated on a variety of molecular biomarkers which can roughly be classified into 
two major platforms: nucleic acid biomarkers (Sidranski, 1997; Brown and Botstein, 
1999) and protein biomarkers (Hutchens and Yip, 1993; Wright, 2002; Issaq et al., 2002). 

These platforms are based on identifying the expressed genes and proteins in cancer 
cells in human tissue or body fluids. Although these platforms have gained considerable 
attention but their adoption into standard clinical practice is limited by the:  

• high cost associated with the technology 

• time required for test procedure 

• narrow targeting of the test to a particular disease, e.g., cancer type 

• substantial variability due to non-homogeneity of tissue samples, rapid degradation 
of tissue samples between sampling and hybridisation and very small depositions of 
DNA on the chip. 

In the last five years a new biomarker platform has emerged based on glycan arrays 
(Bovin and Huflejt, 2008), that challenges the limitations of the nucleic acid and protein 
based platforms. The Printed Glycan Arrays (PGA) are similar to DNA microarrays, but 
contain deposits of various carbohydrate structures (glycans) instead of spotted DNAs. 
Most of these glycans can be found on the surfaces of normal human cells, human cancer 
cells, and on the surfaces of many human infectious agents such as bacteria, viruses, and 
other pathogenic microorganisms. Transformation of cells from healthy to pre-malignant 
and malignant is associated with the appearance of abnormal glycosylation on proteins 
and lipids presented on the surface of these cells. The malignancy-related abnormal 
glycans are called tumor-associated carbohydrate antigens (TACA), (Hakomori, 2002). 
There is growing evidence (Aarnoudse et al., 2006) that numerous TACAs are 
immunogenic, and that the human immune system can generate antibodies against them. 
Since multiple glycans arrayed on PGAs are either known TACAs or closely related 
structures, the antibodies present in human sera that bind to glycans on PGA can indicate 
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the status of response of the immune system to human malignancies (Huflejt et al., 
2005a, 2005b). A prototype of PGA with a library of 200 glycan structures was built at 
Scripps Research Institute, La Jolla, California, under the auspices of the Consortium of 
Functional Glycomics (CFG) (Blixt et al., 2004). Further development of the PGA with 
211 glycans was conducted at Cellexicon, Inc., La Jolla, in collaboration with Shemyakin 
Institute of Bioorganic Chemistry, of the Russian Academy of Sciences, Moscow, Russia. 
The “second generation” of PGA was used in several pilot studies sponsored by the 
National Cancer Institute. Research and improvement of PGA technology and its 
relevance in diagnostic and prognostic applications is currently continuing in the  
Glyco-Medical Group of the Thoracic Surgical Laboratory at the New York University, 
School of Medicine, in collaboration with the Shemyakin Institute. The new PGA chip 
has over 300 carbohydrate structures, most of which were selected and synthesised based 
on previous research experiences in various pilot studies (Huflejt et al. 2005a, 2005b, 
2005c; Arun et al., 2007), which extend to breast, ovarian, and lung cancers and 
malignant mesothelioma. 

The focus of this paper is to present methods and approaches for the processing and 
analysis of PGA data used in the above mentioned pilot studies, and in the studies that 
will follow. The paper briefly describes the principle of PGAs, i.e., the procedure  
of measuring the level of binding of human antibodies against glycans on the array, the 
basic procedures for data preparation, pre-processing and quality control, the procedures 
for diagnostic data analysis and evaluation, and finally the procedures for prognostic data 
analysis and evaluation. All these approaches are demonstrated on data obtained from 
malignant mesothelioma sera archived by one of the co-authors (HIP). The serum 
samples contained 65 high risk subjects exposed to asbestos and 50 subjects diagnosed 
with malignant mesothelioma. The performance of chosen parameters and methods was 
evaluated through cross-validation and bootstrapping procedures, discussed later in this 
paper. 

2 Printed Glycan Arrays 

A Printed Glycan Array (PGA) consists of a glass slide coated with a chemically reactive 
surface on which various glycan structures are covalently attached using standard 
microarray contact printing technology. A PGA slide contains several sub-arrays of the 
entire, presently available glycan library in form of microscopic glycan deposits of size 
50–100 microns. The version of the PGA used to generate data presented in this paper 
has two concentrations of glycans (10 and 50 µM) and eight replicates for each 
concentration, thus resulting in an array of 16 sub-arrays, each containing 211 deposits of 
different glycan structures, and biotin spots used as a printing control. 

The measurement of binding of human Anti-Glycan Antibodies (AGA) to arrayed 
glycans is achieved as described in Huflejt et al. (2009). Briefly, the PGA slide is first 
incubated with the subject’s serum, allowing the binding of serum antibodies to glycans 
in PGA deposits. Serum IgG, IgM and IgA immunoglobulins bound to printed glycans 
are visualised simultaneously with the ‘combo’ biotinylated secondary goat anti human 
IgG, IgM and IgA antibodies (Pierce Biotechnology, Inc., Rockford, IL), and 
streptavidin-Alexa555 (Invitrogen/Molecular Probes, Carlsbad, CA). Fluorescence signal 
intensities that correspond to antibodies bound to printed glycans are scanned  
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at 90% laser power, and quantified with ImaGene software (BioDiscovery, Inc.,  
El Segundo, CA). The total relative fluorescence signal intensity values (appx. range: 
1000–32,000,000 Relative Fluorescence Units) are used for further data processing and 
analyses. 

Figure 1 provides an example of an image obtained by the laser scanner. The figure is 
an excerpt from the slide presenting only one sub-array. The process of complete PGA 
processing, beginning with slide printing and ending with data analysis is shown in the 
block diagram in Figure 2. The rest of this paper will concentrate on the blocks on the 
right-hand side of the diagram. 

Figure 1 Excerpt from a developed PGA shows one of 2 × 8 replicate sub arrays with fluorescent 
intensity spots which correspond to the library of 211 different glycan structures 

 

Figure 2 Steps in processing of PGAs and subsequent data analysis (see online version  
for colours) 
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3 Data preparation and quality control 

Quantification of scanned PGA images is performed separately for each developed slide, 
i.e., subject. The quantification also includes the first step of quality control: images are 
visually examined; images with poor quality (high background noise, ‘scratches’, 
‘clouds’ and irregular shapes of spots, such as a donut-shape and ‘bleeding’ spots) are 
rejected; and the development of the sera for the same subject is repeated. Data files 
obtained by quantification of all successfully developed slides are then aggregated into a 
single data file which basically contains data matrices of total fluorescence intensities for 
two concentrations, 10 µM and 50 µM. We have used total intensities instead of mean 
intensities since the former gives a more adequate measure of the binding level of AGA. 
The use of total intensities is justified by the fact that the deposition of glycans on PGA 
chips is very regular, which is tested and verified by examining the ‘salt images’ of all 
glycan deposits on each PGA slide that were scanned immediately following the printing. 

The fluorescence intensities of bound antibodies for each glycan on each slide are 
summarised by computing the median across all corresponding replicates. This method of 
summarisation is more robust in terms of outliers than the mean. The result of the 
replicate summarisation is n by d raw predictor matrix Xraw, where n is number of 
subjects (n = 65 + 50) and d is number of glycans on the PGA library (d = 211). 

The second step in quality control is the inter-slide quality control, which tests the 
reproducibility of data obtained for the same subject (same serum) but developed and 
quantified at different times and on PGA slides from different print batches. In order to 
quantify this type of reproducibility we used Lin’s concordance correlation coefficient 
(Lin, 1989). Lin’s CCC is used instead of the traditional Pearson correlation coefficient 
as the latter fails to capture differences due to linear bias in scale and location. Since this 
approach could not have been applied to all subjects due to the cost of slide development, 
it has been applied to a fraction of randomly selected subjects in control and case 
samples, whose serum was developed in two different days and on two different batches 
of PGA slides. The testing of the printed slide batches was however done on a regular 
basis as a part of the standard operating procedure. For that purpose we have used a 
serum of two benchmark subjects, which was incubated with each new print batch. 

In addition to inter-slide QC we have also performed intra-slide QC that tests the 
reproducibility of data within R replicated sub-arrays on each slide (R = 8). For this 
purpose we have used the overall concordance correlation coefficient (Barnhart et al., 
2002). The OCCC is a generalisation of Lin’s CCC through addressing several sources 
instead of only two. Slides which have OCCC < 0.9 are rejected and the development of 
the same serum is repeated until a satisfactory level of intra-slide concordance is 
achieved. 

4 Data pre-processing 

The data that pass the quality control analyses are generally still noisy and not amenable 
for direct use in diagnostic and prognostic analysis. Pre-processing steps are thus 
performed including noise screening, normalisation and normality transformation. 
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4.1 Noise screening 

Noise screening implies cleaning of data from those variables (glycans) that have 
evidently noisy behaviour and are deemed to be unreliable.  There are several sources of 
noise but we will restrict ourselves to measurement noise that can be assessed through the 
variation of replicated intensities. The noise screening has involved rejection of those 
glycans associated with fluorescence intensities that have manifested noisy behaviour 
consistently for all observations (subjects). We have used three measures as rejection 
criteria: intensities below the noise threshold, high value of Coefficient of Variation (CV) 
of replicates, and low Interclass Correlation Coefficient (ICC). 

In addition to noise screening, we have also removed ‘redundant glycans’.  
The redundancy of glycans is determined by the Pearson cross-correlation coefficient 
computed for fluorescence intensities across all observations, for all combinations of 
glycan pairs. 

Finally, control signals and signals that correspond to control glycans and non-glycan 
spots (e.g., biotin spots) are also removed from future diagnostic and prognostic analysis. 

4.2 Data normalisation and transformation 

The main goal of data normalisation is to reduce the systematic per-slide bias in scale and 
location. The probe bias was not essential in this study since the quality of printed spots 
was controlled by examining the salt images mentioned above. We have used intra-array 
linear normalisation. This normalisation method can remove linear bias with negligible 
damage to discriminatory information since most of the glycans on the chip (left after 
noise screening) are non-discriminatory, i.e., class invariant. 

Data transformations are applied after normalisation, primarily to shorten the 
distribution tails. We have used a Box-Cox power transform extended for negative 
arguments in order to handle normalised data values (John and Draper, 1980). The 
transformation parameter λ is set to 0.2 for all glycans. The value was found to be overall 
optimal after extensive experimentation with real and simulated data. The effect  
of normalisation and transformation is illustrated in Figure 3, which shows that the  
inter-slide concordance correlation coefficient for a benchmark subject was increased 
from 0.91 to 0.99 after data normalisation and transformation. 

Figure 3 Concordance plots for two slides obtained from the serum of the same subject 
developed on PGA slides from two different print batches (see online version  
for colours) 
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5 Diagnostic data analysis 

The goal of diagnostic data analysis is to identify a set of features (glycans) and to 
specify a classification algorithm which effectively enough discriminates between the 
control and case samples of a given training dataset. The identified set of features and the 
specified classifier will hopefully be able to accurately classify new observations with 
unknown class membership. The prediction accuracy of such a classifier can be estimated 
with various cross-validation and bootstrapping techniques. 

5.1 Univariate feature selection 

The first step in diagnostic data analysis is to evaluate the discriminatory ability of each 
glycan separately, which is also known as univariate feature selection, or ranking. Since 
the data at hand are sampled from an unknown distribution, it is appropriate to use one of 
the standard non-parametric approaches. We have used Wilcoxon-Mann-Whitney 
(WMW) ranking in which the ranking of p-values is coincident with the ranking by the 
area under the ROC curve (AUC). The individual ranking of glycans for the 
mesothelioma assay applied to pre-processed data is shown in Table 1 in which the nine 
top ranked glycans are represented by their Glycan Identification Number (GID) and by 
their carbohydrate structure. The corresponding distributions of case and control samples 
are shown in Figure 4. This figure illustrates the complexity of the discrimination 
problem: almost all distributions for control and for case samples display multiple modes 
(at least bimodality) and a relatively high overlap between samples, which is the cause of 
the relatively low individual AUC values. 

Figure 4 Distributions of the case (dotted line) and control sample (solid line) of the top nine 
glycans listed in Table 1 (see online version for colours) 
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Table 1 Top 9 glycans ranked by Wilcoxon-Mann-Whitney rank sum test in mesothelioma 
study (65 asbestos exposed, 50 malignant mesothelioma) 

Rank GID Glycan structure p-value AUC 
1 311 Neu5Acα2-3Galβ1-4Glcβ-sp 0.00003 0.7274 
2 334 (Neu5Acα2-8)3-sp 0.00043 0.6923 
3 189 GlcNAcβ1-6GalNAcα-sp 0.00054 0.6889 
4 328 GlcNAcβ1-4(GlcNAcβ1-6) GalNAcα-sp 0.00062 0.6868 
5 512 Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ-sp 0.00458 0.6548 
6 354 Galβ1-4GlcNAcβ1-6GalNAcα-sp 0.00527 0.6523 
7 211 Man1-4GlcNAcβ-sp 0.00638 0.6489 
8 517 Galα1-4GlcNAcβ1-3Galβ1-4GlcNAcβ-sp 0.00892 0.6428 
9 804 Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ1-4Galβ1-4Glcβ-sp 0.01822 0.6289 

The fact that the individual AUC values are relatively small suggests a necessity for 
conjunction of the discriminatory information associated with several glycans.  
A common way to do this is by linear combination (projection) of intensities associated 
with the top selected glycans: 

,i iz = x w  (1) 

where zi is the projected intensity for subject i, 1 2( , ,..., )T
mw w w=w  is the projection 

vector, while 
1 2

( , ,..., )
mi ij ij ijx x x=x  is the row vector of pre-processed fluorescent 

intensities for m selected glycans. The projection (1) is the basic idea of all linear binary 
classifiers such as logistic and linear regression, Fisher Linear Discriminant (FLD) or 
Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), single-layer 
artificial neural networks, etc., where the class membership of an unlabelled observation 
zx is determined by checking the sign of zx + wo, where wo is the classification decision 
point. 

After extensive experimentation with real and simulated data we have chosen 
Multiple Logistic Regression (MLR) as the most appropriate and reasonably efficient 
projection method for the mesothelioma study. 

5.2 Cross validation 

Once the feature selection and projection method are defined a question remains as to 
how many features should be used in projection (1). A larger number of variables 
generally results in better training performance but inevitably leads to over-fitting.  
The standard approach to address this issue is cross-validation. The results for repeated 
10-fold cross-validation are shown in Figure 5. Here we used two performance measures: 
the accuracy (Acc) and the area under the ROC curve (AUC), which are both functions of 
projected values 1 2( , ,..., )nz z z=z  and their class labels 1 2( , ,..., )ny y y=y , (1, 2).iy ∈  
The latter performance measure is particularly suitable since it is insensitive to sample 
imbalance (Fawcett, 2003) and is independent from the choice of decision point wo, thus 
covering the performance of a family of classifiers (Hanley and McNeil, 1982; Bradley, 
1997). In addition, the AUC is more discriminating than Acc, since it has better 
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resolution than Acc (Ling et al., 2003). Finally, the AUC has ranking ability, which is an 
important notion even more fundamental than classification (Flach, 2004; Hand and Till, 
2001). 

In order to minimise the prediction bias and variability we have used balanced, 
unbiased repeated 10-fold cross-validation. ‘Balanced’ refers here to the fact that each 
fold has the same class distribution as the original training samples. ‘Unbiased’ refers to 
the minimisation of the bias due to variable selection by embedding the feature selection 
into the cross-validation loop (Ambroise and McLachlan, 2002; Simon et al., 2003). The 
computation of the cross-validated performance measures was carried out by averaging 
across the folds, instead of pooling, which further reduces the stratification bias (Parker  
et al., 2007). The number of cross-validation repeats was 100. Figure 5 shows the training 
and cross-validated performance measures for the number of features that range from 
m = 1 to m = 24. The optimal number of features is m = 5 for both measures. Clearly 
over-fitting takes place for m > 5. The achieved cross-validated performance measures 
for 5 features are Acc = 74.1% and AUC = 0.811, while the corresponding training 
(observed) values for the same number of features are AccO = 79.1% and AUCO = 0.864 
respectively. 

Figure 5 Accuracy of classification and AUC value for combined top WMW-ranked glycans 
using multiple logistic regression. The diagram shows the training (dotted line) and the 
repeated 10-fold cross-validated (solid line) accuracy and AUC value for various sizes 
of glycan sets ranging from one to 24 (see online version for colours) 

 

5.3 Compound feature selection and adjusted ROC curve 

Once the optimal number of features has been determined, we would like to establish 
some kind of ranking of their importance based on an experiment similar to cross-
validation instead of the ‘observed’ ranking given in Table 1. For this we propose the 
Compound Feature Selection (CFS) algorithm which performs feature selection (in this 
case the univariate WMW ranking) on many randomly selected subsets of control and 
case samples, known as a repeated balanced hold-out procedure. The results are 
compounded and presented in a frequency diagram of presence of features in sets  
of m selected features in each hold-out iteration. The result for the mesothelioma assay, 
for m = 5 and B = 1000 hold-out iterations with balanced hold-out samples of size 
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n1 = n2 = 35 is shown in Figure 6. The ranking of features with the univariate CFS 
algorithm coincides with the WMW ranking: GID = 311, 334, 189, 328, 512.  

Figure 6 Compound feature selection for feature sets of size m = 5, obtained with 1000 balanced 
hold-out iterations with equal hold-out samples of 35 subjects. The numbers on the 
horizontal axis represent column indices of predictor matrix, while the stem numbers 
correspond to most frequent GIDs. Feature selection is performed by univariate WMW 
ranking (see online version for colours) 

 

Figure 7 shows the observed ROC curves obtained for the combined top five compound 
glycans and for a single, top-ranked glycan GID = 311. The figure also shows the 
adjusted ROC curve1 obtained by 1000 hold-out iterations with 30–70% split between the 
test and training samples. 

Figure 7 ROC diagram for the mesothelioma assay obtained for top CFS-ranked glycans 
combined by multiple logistic regression (top solid line). The diagram also shows ROC 
curve for the single top ranked glycan (dotted line), and the adjusted ROC curve 
(middle solid line) (see online version for colours) 

 

The procedure for adjusted ROC curve is implemented as follows:  

1 Compute the observed ROC curve sn = ROCO (fpr) - sensitivity as function of false 
predictive rate 

2 Perform B hold-out iterations. In each iteration do the following: 

a randomly split the data into test and training sets in balanced proportion 

b perform feature selection and projection based on sampled training subset 
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c derive the training ROC curve ROCT (fpr) 

d derive the validation ROC curve ROCV based on sampled test subset 

e find the curve difference ∆(fpr) = ROCT (fpr) – ROCV (fpr). 

3 Find the average of differences across all iterations ∆avr (fpr) = mean(∆) 

4 Adjust the ROC curve: ROCA (fpr) = ROCO (fpr) – ∆avr (fpr). 

This algorithm is used to derive the estimated predictive ROC curve and AUC value that 
accounts for feature selection bias. The resulting AUC value is slightly higher than the 
value obtained by repeated 10-fold cross-validation in Figure 5. 

5.4 ImmunoRuler 

After the optimal features are selected and the projection vector determined for a given 
set of training data, it would be useful to visualise the ranking of the results by using 
some standard measure – the risk score. Therefore we propose a novel visualisation 
method which we name ‘ImmunoRuler’ and which presents the risk scores of all subjects 
in the training set, in an organised graphical way. Such a diagram obtained for the 
mesothelioma assay is shown in Figure 8. The risk scores are defined as: 

1 ,
1 exp( )i

i o

r
z w

=
+ − −

 (2) 

where zi is the projection (1), while wo is the classification decision point. The risk scores 
are sorted in ascending order, separately for controls (bars 1 to 65) and cases (bars 67 to 
115). The two groups of bars are painted in different colours, and each colour has two 
shades to indicate quartile ranges. In the case in which the vector w and scalar wo are 
estimated by logistic regression, the risk scores ri can be interpreted as conditional 
probabilities of belonging to the case sample, and the decision point for classification 
would be line of equal odds ro = 0.5. The position of the classification decision line can 
be modified depending on the diagnostic application, which can demand higher 
specificity or higher sensitivity. A common way is to consider the loss due to 
misclassification (Adams and Hand, 1999): 

1 1 1 2 2 2 ,L f C f Cπ π= +  (3) 

where πk, fk and Ck are probability of belonging to class k, probability of misclassifying 
class k, and the cost of misclassifying class k respectively. With the known priors, this 
translates into: 

1 1 2 2(1 ) (1 ) .p nnL n s C n s C= − + −  (4) 

If we use the desired ratio between costs of misclassifying controls and cases, 
1 2/ ,C Cγ =  then the corrected value of classification decision point based on minimal 

loss can be determined by the following maximisation procedure: 

1 2arg max [ ( ) ( )],c p n
t

w n s t n s tγ= +  (5) 
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where t is the varying decision point which is used to compute sensitivity and specificity. 
The corrected decision line on the ImmunoRuler diagram becomes: 

1 .
1 exp( )c

o c

r
w w

=
+ −

 (6) 

The corrected decision line rc = 0.546 in Figure 8 is determined for equal cost of 
misclassification of controls and cases, γ = 1. The corresponding accuracy is 82.6%, 
specificity 92.3% and sensitivity 70%. 

Figure 8 The ImmunoRuler diagram of risk scores obtained for 65 controls (on the left) and 50 
cases (on the right). The bar graphs are sorted by the ascending order of risk scores and 
are painted in darker shade for scores within quartile ranges. The immuno-ruler diagram 
can be used to classify unlabelled subjects (bar with whiskers) by comparing it with the 
decision threshold (see online version for colours) 

 

The ImmunoRuler can be used to classify a new, unlabelled subject by computing his/her 
risk score using the features and the projection vector obtained during the ImmunoRuler 
training phase, and by projecting the risk score on the background of the trained 
ImmunoRuler (the wider bar with solid edges). This bar can be plotted with whiskers 
which indicate standard deviation or MAD of replicates, propagated all the way from pre-
processing phase to the projection. 

5.5 Significance of observed AUC 

The statistical significance of the observed AUC value can be tested by the 
nonparametric bootstrap (Efron and Tibshirani, 1993). In order to estimate the 
distribution of the AUC value under the null hypothesis that the control and case samples 
were drawn from the same population, we have computed the AUC value for 100,000 
randomly permuted training samples. The permutation bootstrap is generally less  
biased than the bootstrap with replacement. The computation of the AUC replications 
included feature selection in order to minimise the bias due to variable selection.  
The resulting empirical distribution is shown in Figure 9. As seen the distribution  
is very close to a normal distribution, with skewness 0.047 and kurtosis 3.01. The mean 
value and the standard deviation of the distribution are A0 = 0.738 and σ0 = 0.032 
respectively. The two-sided confidence interval for 95% confidence level, CI = [0.675, 
0.801], agrees with the normality assumption, i.e., CI  [A0 – 1.96σ0, A0 + 1.96σ0],  
thus allowing the approximation of the empirical null distribution with the normal  
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distribution
0

2
0 0( ) ( ; , ).HF x x A σ≈ Φ Consequently the achieved significance level can be 

computed as: 

0

2
0 0ASL 1 (AUC ) 1 (AUC ; , ) 0.000044,H O OF A σ= − ≈ − Φ =  (7) 

where AUCO = 0.864 is the observed AUC value. Thus, we can conclude that the 
observed AUC is significantly different from the expected AUC under the null hypothesis 
obtained by permutation bootstrap, and that there is strong evidence to reject the null 
hypothesis.  

Figure 9 The empirical distribution of the AUC value obtained with permutation bootstrap under 
the null hypothesis that the control and case samples are drawn from the same 
distribution. The replicated AUC values were obtained by performing the feature 
selection in each of the 100,000 bootstrap iteration in order to minimise the feature 
selection bias (see online version for colours) 

 

5.6 Multivariate feature selection 

Feature selection can be thought of as a function ( , , , )mJ f m ϕ= X y  which maps an n by 
d predictor matrix X of explanatory variables, n by 1 vector y of corresponding response 
variables (labels), number m of features we consider as important and want to select, and 
a specifier of feature selection method ϕ, into a set of unique column indices of matrix X, 

1 2{ , ,..., }, 1 .m m kJ j j j j d= ≤ ≤  Examples for the specifier ϕ are WMW, FSFS/BSFS – 
Forward/backward sequential feature selection (Draper and Smith, 1966) and (Nete and 
Wasserman, 1974), LARS – Least Angle Regression (Efron et al., 2004), Random Forest 
Feature Selection (Breiman, 2001), RFE – Recursive Feature Elimination (Guyon et al., 
2002), GLL - Generalised Local Learning (Aliferis et al., 2010a, 2010b). WMW is an 
example of univariate feature selection which consists of independent ranking of all d 
features based on Wilcoxon-Mann-Whitney rank sum test statistics, and then simply 
selecting m top ranked features. Other methods are examples of multivariate feature 
selection approaches, since they combine several features (columns of matrix X) into 
discriminant vector z which is then used in some performance measure such as accuracy 
or AUC value.  The approach can be formally described as: 

( ) ,m mJ=z X w  (8) 
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where ( )mJX  denotes the sub matrix of the predictor matrix X, which contains only 
columns listed in mJ , while wm is m by 1 projection (or regression) vector obtained by 
some projection method, such as MLR, SVM, LDA, applied to ( ).mJX  Besides the 
classifiers based on linear projection (8) there are other classifiers, such as Naïve Bayes 
classifier, regression trees (CART, C4.5), Random Forest classifier, k-nearest neighbour 
classifier etc. which do not fit directly into description (1) and are not considered in this 
discussion. 

The power of multivariate feature selection is based on the fact that some features that 
can be ranked very poorly in a univariate test, but combined with other highly ranked 
features can produce a large training effect size, i.e., large training performance measure 
(Guyon and Elisseeff, 2003). However, multivariate feature selection has to be used with 
caution since it can easily lead to over-fitting and low cross-validated performance, 
especially in case of small training samples. 

Discrimination based on equation (8) where Jm specifies only linear explanatory 
variables does not address the polymorphic behaviour of the immuno-response, suggested 
by the distributions in Figure 4. For example if we assume MLR where the elements of w 
are regression coefficients estimated from training data { }( ), ,mJX y  and 

1 2( , ,..., )mx x x=x  is a feature vector of a subject, i.e., a row vector of ( ),mJX  then it can 
be shown that the marginal effect of the risk score of the subject with respect to the signal 
associated with the feature j can be written, based on equation (2), as: 

(1 ) .j
j

r r r w
x

∂ = −
∂

 (9) 

In other words, the marginal effect with respect to any signal does not explicitly depend 
on a signal associated with any feature, but depends only implicitly through r. If we 
however suppose for example a feature vector with linear and one interaction term 

1 2 1 2( , ,..., , ),mx x x x x=x  then: 

1 2 1
1

(1 )( ),m
r r r w x w
x +

∂ = − +
∂

 (10) 

suggesting that the marginal effect of risk score with respect to x1 explicitly depends on 
another signal x2. In light of the polymorphic assumption, we can consider feature j = 1 as 
a discriminatory feature, while feature j = 2 can be a hidden variable which is not 
necessarily discriminatory (not highly ranked in a univariate test) but makes a  
difference between subjects with different responses measured by binding to glycan j = 1. 
In other words, the feature j = 2 provides a polymorphic context for feature j = 1 when 
assessing its marginal effect. Following this reasoning, we will include into  
feature selection and projection the interaction and quadratic terms, which gives  
rise to the design matrix [ | | ]D L I Q=X X X X  which is generally composed from  
three matrices: 1 2[ | ... | ]L M=X u | u u  – the n by M matrix of linear terms, 

1 2 1 3 1 2 3 1[ | .... | | ... | | .... | ]I M M M−=X u u | u u u u u u u u  – the n by 2
MC  matrix of 

interaction terms, and 1 1 2 2[ | | .... | ]Q M M=X u u u u u u – the n by M matrix of 
quadratic terms. The columns uj of XL are pre-selected columns from the original data 
matrix X. The pre-selection is done for practical reasons to reduce the size of the matrix 
XI and therefore to reduce the execution time for feature selection algorithms. We used 
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M = 60 top glycans ranked by WMW test. The columns of XI represent all possible 
element-wise products (operator ‘o’) of columns of XL, which are ordered as implied by 
the expression above. 

The equivalent of (8) is now the projection ( ) ,D m mC=z X w  where Cm is the set of 
column indices of XD selected by the specified feature selection algorithm, while wm is 
vector obtained by a projection algorithm applied to ( ).D mCX Thus indices from Cm refer 
either directly to the columns of X (the features) or to products of columns of X (the 
interaction or quadratic terms). 

The performance of multivariate feature selection in the mesothelioma study is shown 
in Figure 10. The figure presents AUC values obtained by univariate feature selection 
based on WMW ranking and by multivariate feature selection based on forward 
sequential feature selection (denoted FWD). Both approaches are used with projection 
based on MLR, and are applied to design matrix with only linear terms and with linear 
and interaction terms. The left part of the figure shows training, while the right part 
shows the cross-validated AUC values. The cross-validation is performed with 10-fold 
cross-validation repeated 100 times. The AUC values are derived for various values of m 
ranging from 1 to 7. As expected the training performance is best with multivariate 
feature selection with linear and interaction terms and the worst with univariate feature 
selection with linear terms only. The cross-validated performance is, however, best  
for univariate feature selection with only linear terms (already discussed earlier, see 
Figure 5), and the next in performance is the multivariate feature selection with linear and 
interaction terms. The latter has achieved the maximal cross-validated AUC value of 0.77 
for m = 4 interaction pairs. 

Figure 10 Comparison of training and cross-validated AUC value for various univariate and 
multivariate feature selection approaches (see online version for colours) 

 

Figure 11 shows the CFS diagram for multivariate forward sequential feature selection 
for m = 4. The top CFS selected columns of the design matrix with linear and interaction 
terms refer to interaction pairs of GIDs (121, 311), (121, 328), (328, 334), and linear term 
328. According to Table 1, the glycans 311, 334 and 328 can be considered as 
discriminatory glycans with WMW p-value p ≤ 0.00062, while the glycan 121 has 
WMW-rank 17 with p = 0.053 (not shown in Table 1), and as such cannot be regarded as 
a discriminatory glycan, but rather as a hidden glycan which provides a polymorphic 
context to discriminatory glycans 311 and 328. It is interesting to note that CFS with 
forward sequential feature selection applied to only linear terms and m = 4 would select 
glycans 311, 328, 189 and 334, but not the glycan 121. The carbohydrate structure of 
glycan 121 is GalNAca1-O-Ser. 
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Figure 11 Compound feature selection based on the forward sequential feature selection used with 
multiple logistic regression and design matrix with linear and interaction terms. The 
number of selected features/interaction pairs is m = 4. The GIDs indicate the individual 
glycan and the interaction glycan pairs with the highest frequency of occurrence 
through 1000 hold-out iterations (see online version for colours) 

 

The permutation bootstrap test with B = 10,000 iterations applied to FWD feature 
selection with m = 4 has resulted in empirical distribution under the null hypothesis  
with the mean value A0 = 0.84, standard deviation σ0 = 0.023, skewness = 0.026, 
kurtosis = 2.955, CI = [0.790, 0.880] and achieved significance level ASL = 0.00014.  
The observed AUC value for the training set is AUCO = 0.918.  The observed value for 
CFS-selected glycan interaction pairs, GID = (121, 311), (121, 328), (328, 334) is 
AUCO = 0.891, and the corresponding ASL = 0.006. These numbers show that despite the 
relatively low cross-validated precision and AUC value, there is a solid statistical 
significance for the AUC values obtained with the multivariate feature selection with 
interaction terms. Better cross-validated performance will be achieved with larger 
samples. 

6 Prognostic data analysis 

The goal of the prognostic analysis is to identify a set of glycans which best discriminate 
patients with low or high survival ability among the patients already diagnosed with the 
disease, here malignant mesothelioma. These glycans can be then used with a trained 
classifier to predict the survival probability of new patients diagnosed with 
mesothelioma, or to assess the effectiveness of a treatment in the process of the disease 
management of the patient.  In order to perform the prognostic analysis it is necessary to 
know the survival times of patients in the training sample. In this study we have used 
Anti-Glycan Antibody (AGA) immunoprofiles of 35 patients out of 50 cases used in 
diagnostic analysis. The 35 cases analysed here are presented with malignant 
mesothelioma that can be histologically defined and staged, while the other 15 patients 
are presented with very advanced and often un-resectable cancer with clearly very poor 
prognosis, and therefore were deemed inappropriate for prognostic analysis. 

The sorted survival times of the 35 cases are shown in Figure 12. The survival times 
are expressed in number of months between drawing the blood and the death of the 
patient. The four marked bars represent patients who were still alive at the time of clinical 
data collection and they will be treated as censored data in further analysis. The training 
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sample used in this analysis is relatively small and has limited utility for the plausible 
identification of prognostic markers. However the analysis that we present here will show 
that the data have indeed enough power to discriminate between poor and good prognosis 
groups. 

Figure 12 Sorted Month-to-Death of 35 patients with malignant mesothelioma used in prognostic 
analysis. The patients are sorted by increasing survival time. The four marked bars 
represent patients still alive at the time of recording their clinical data (see online 
version for colours) 

 

6.1 Cox proportional hazard regression 

A natural approach to relate the predictors associated with various glycans with the 
survival times is the Cox proportional hazard regression model (Cox, 1972). The Cox PH 
regression can be built into a classifier, which works in a similar way as proposed by 
Lopes-Rios et al. (2006) where the gene P16/CDKN2A was used as a binary predictor 
(homozygous deletion status). This classifier has been cross-validated by the repeated  
10-fold cross-validation, with 100 repetitions and the result was rather poor: Acc < 60%, 
AUC < 0.6, which rendered the classifier and the prognostic glycans ineffective.  
The same inferior result was obtained for cut-off time of 28 months in labelling the poor 
and good prognosis groups. 

Besides the general failure of the classifier above there is a question of the 
appropriateness of application of the Cox PH model on PGA data in the first place. 
Namely, the basic assumption about the predictors to be used in the Cox PH model is the 
proportionality assumption, or consequently the independence of predictors on survival 
time, which can not be guaranteed for PGA-based predictors. 

6.2 Discriminatory approach 

An alternative approach to prognostic analysis is to apply the same discriminatory 
approach that was used in the diagnostic analysis. For this purpose we have labelled the 
35 mesothelioma patients into poor and good prognosis groups by using cut-off value of 
28 months. This seems to be a natural value after considering the survival times in  
Figure 12. 

The univariate ranking of prognostic glycans with WMW tests applied to 27 patients 
labelled with poor prognosis (28 or less months of survival) and 8 patients labelled with 
good prognosis is shown in Table 2. As seen there are two glycans, GID = 154 and 
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GID = 215 with distinguishing low p-values and high AUC values, considering the 
sample sizes. 

The cross-validation results are shown in Figure 13, which is analogous to Figure 5 
obtained in the diagnostic analysis. As seen the best cross-validated performance, 
Acc = 85.7% and AUC = 0.842, is obtained for two glycans. 

Table 2 WMW ranking of glycans for samples of 27 poor prognosis and 8 good prognosis 
patients with malignant mesothelioma 

Rank GID Glycan structure p-value AUC 

1 154 Glcα1-4Glcβ-sp 0.00204 0.8657 

2 215 GlcAβ1-6Galβ-sp 0.00302 0.8519 

3 158 Galβ1-4Glcβ-sp 0.04306 0.7407 

4 181 Neu5Acα2-6Galβ-sp 0.04306 0.7407 

5 207 6-O-Su-Lacβ-sp 0.06204 0.7222 

Figure 13 Prognostic accuracy and AUC value for combined top WMW-ranked glycans  
using multiple logistic regression. The diagram shows the training (dotted line) and 
cross-validated (solid line) performance values for various sizes of glycan sets ranging 
from one to 7 (see online version for colours) 

 

The CFS diagram for two-glycan feature sets is shown in Figure 14, which is an analogue 
to Figure 6. The sharp drop in frequency after the second glycan clearly suggests that 
only two glycans, 154 and 215 can be considered as prognostic glycans. This finding may 
further improve after we implement the new generation of PGA arrays which will have 
an extended library of 300 glycans. 

The observed AUC value for the training set of 35 mesothelioma patients is 
AUCO = 0.977. In order to determine the statistical significance of this high AUC value 
we have performed the bootstrap test similar to the test discussed in Section 5.5.  
The permutation bootstrap test with B = 10,000 applied to AUC value obtained with 
WMW feature selection and MLR projection using only linear terms, has resulted in 
empirical distribution under null hypothesis with mean value A0 = 0.86, standard 
deviation σ0 = 0.049, skewness = –0.057, kurtosis = 2.77, two-sided confidence interval 
at 95% confidence CI = [0.764, 0.954], and achieved significance level ASL = 0.0092. 
This test has provided solid evidence that the mean AUC value under null hypothesis is 
significantly different than the observed AUC value of the training set. 
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Figure 14 Compound feature selection for feature sets of size m = 2, obtained with 1000 balanced 
hold-out iterations with equal hold-out sample sizes of 7 subjects. The feature selection 
is performed by WMW ranking and projection by MLR applied to 27 poor prognosis 
and 8 good prognosis mesothelioma patients (see online version for colours) 

 

One of the principal goals of the prognostic analysis is to estimate the survival probability 
of a patient newly diagnosed with disease, or a diseased patient who has undergone a 
treatment. This can be done with the Kaplan-Meier (KM) estimator (Kaplan and Meier, 
1958), which involves two steps:  

1 plotting the survival functions for two groups of subjects with given survival times 
and censored information 

2 testing of a new patient using same predictors and assigning the patient to one of the 
two KM curves. 

The predictors used here are based on PGA data from which we are deriving the risk 
scores based on feature selection and projection discussed in the previous section. If the 
risk scores are defined by equation (2) and if the projection is performed with MLR, then 
we can say that patient with risk score equal to or below 0.5 belongs to the good 
prognosis group, otherwise the patient belongs to the poor prognosis group. The KM 
curves for the two prognosis groups are shown in Figure 15. The estimator is named 
“Observed KM” since the partitioning of subjects into two groups was based on the risk 
scores computed for the training set. The logrank p-value for the estimator is p = 0.0049, 
thus rendering the two KM curves significantly different. The median survival times are 
14 and 63 months respectively. 

Figure 15 Observed Kaplan-Meier plots obtained for mesothelioma patients with low (≤0.5) and 
high (>0) AGA risk score (see online version for colours) 
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Perhaps a more appropriate approach is to derive the KM estimator by a cross-validation 
technique. We have used leave-one-out approach due to a small training set.  
The algorithm goes as follows: 

1 Label all patients as good prognosis if their survival time is greater than  cut-off 
value, otherwise label them as poor prognosis 

2 Remove one patient from the training set 

3 Perform feature selection on the rest of the training set 

4 Extract predictors associated with selected features 

5 Find projection vector and intercept by using MLR 

6 Compute the risk score for the removed patient by using training data obtained  
in Steps 3–5 

7 Mark the removed patient as good or poor prognosis depending on his or her  
risk score 

8 Repeat Steps 2–7 until all patients from the training set are removed once and 
labelled 

9 Use marked patients and their clinical data (survival times) to construct KM curves. 

The LOOCV KM diagram is shown in Figure 16. The good/poor prognosis curves have 
logrank p-value p = 0.0112, still making the two curves significantly different.  
This diagram can be used to assess the survival probabilities for a new patient by using 
his or her serum and the risk score computed with projection vector based on prognostic 
glycans GID = 154 and 215 (determined by the CFS algorithm, Figure 14) and applied to 
the entire training set. 

Figure 16 Cross-validated Kaplan-Meier plots (see online version for colours) 

 

7 Conclusion 

In this paper we have systematically presented an array of rigorous approaches for quality 
control, pre-processing, analysis and evaluation of diagnostic and prognostic data based 
on printed glycan arrays, which we have used since the inception of the new PGA 
technology in 2006. The methods are demonstrated on a mesothelioma study performed 
in the School of Medicine of the NYU, which contained sera of 65 high risk subjects 
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exposed to asbestos and 50 subjects with malignant mesothelioma. Although this was a 
case-control study with unspecified intended clinical use and with relatively small 
samples, we were still able to manifest the existence of diagnostic and prognostic power 
of PGA data and our analytical approaches. For example the conservative univariate 
feature selection based on non-parametric Wilcoxon-Mann-Whitney ranking and 
projection based on multiple logistic regression have resulted in observed values of 
accuracy and AUC value 79.1% and 0.864 respectively, while the repeated 10-fold  
cross-validation has yielded 74.1% and 0.811 respectively. The parametric permutation 
bootstrap with AUC statistics has resulted in achieved significance of the observed AUC 
value equal to 0.000044. The multivariate feature selection based on sequential feature 
selection algorithm and multiple logistic regression applied to the predictor matrix with 
linear and interaction terms has revealed a new glycan, GID = 121 (GalNAca1-O-Ser) 
which is ranked very low in the Wilcoxon test (p = 0.053) and which would not have 
been chosen by univariate or multivariate feature selection approaches applied to only 
linear terms of the predictor matrix. This glycan is apparently providing a polymorphic 
context to other highly discriminative glycans, and it has therefore elevated the observed 
precision and AUC value to 82.6% and 0.918 respectively. The achieved significance of 
the observed AUC value in parametric bootstrap was 0.00014. The cross-validated 
precision and AUC value were rather low, 70.1% and 0.77 respectively. These values 
were low due to the fact that the samples were too small for a multivariate feature 
selection and for inclusion of interaction terms. 

We have also demonstrated the possibility of using the PGA data for prognostic 
purposes. The analysis is conducted as case-control discrimination where the patients 
with mesothelioma were labelled as poor prognosis (‘case’) and good prognosis 
(‘control’) depending on their survival times. The cut-off value was chosen to be 28 
months. The univariate feature selection with multiple logistic regression applied to only 
linear terms of the predictor matrix has revealed two distinguished prognostic glycans, 
which were not seen in diagnostic analysis. The cross-validated accuracy and AUC value 
were 85.7% and 0.842 respectively. The observed AUC value was 0.977 and the 
achieved significance level in permutation bootstrap was 0.0092. This is a very 
encouraging finding despite the very small training sample, which suggests that the PGA 
based predictors can be used for prognosis as well as for diagnosis. 

Although the results presented in this paper are very encouraging, we would still like 
to acknowledge the fact that the observations are from a small study, and that for 
potential clinical applications larger and randomised sample sets are needed. The new 
study is planned for the near future. The new study will be performed on a new version of 
PGA chips with a library of over 300 glycans. 
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