
CS Masters' Thesis Defense
Title: A New RAID Linux Flash File System
Speaker: Xinhua Fahy
Date: Monday, April 2, 2012
Time: 11:00 a.m.
Location: GMCS 405
Thesis advisor: Dr Tao Xie

Abstract:
NAND flash memory has been widely used in the embedded market because of its desirable properties
such as non-volatility, shock resistance, low power and low latency for reading and writing. However,
hardware limitations like the need to erase before writing again, erase block sizes than span multiple
write pages, and limited memory cell lifespan, make file system requirements for flash memory very
different from those for conventional block devices. As such, conventional file system cannot be
applied directly to flash memory. 

To address these issues, two different approaches have been proposed: (1) add a software layer that
emulates a block device using the flash device, and (2) create special-purpose file systems that are
targeted to flash devices. The first approach, which is based on a Flash Translation Layer (FTL)
concept, succeeds in making flash devices universally accessible, but hiding flash device characteristics
from the file system inevitably leads to reduced performance compared to the second option, of
creating “flash-aware” file systems. 

There is currently no support for flash-based RAID file systems in standard Linux distributions. RAID
support is particularly important for NAND flash devices because they have a high rate of cell failure
as they age compared to disk drives. In addition, RAID support can provide performance enhancements
that enable video rate recording of data, which has already been demonstrated in some high
performance video cameras. As NAND flash devices continue to fall in price at a faster pace than disk
drivers, price barriers will be reduced or eliminated. As such it is anticipated that RAID-capable flash
file systems will eventually become a fundamental requirement for modern operating systems. 

There are currently three dominant flash file systems for Linux: JFFS2, YAFFS2, and UBIFS. JFFS2
has issues scaling to large sizes and does not write the index data to flash as it goes, but instead
reconstructs it every time the system mounts. This means mounting a large JFFS2 file system can take a
long time, which would only be worsened in the context of RAID. YAFFS2 and UBIFS do write their
indexes to flash as they go but have other issues. UBIFS is the most advanced of the three but is
somewhat immature, very complex (three times the code size of JFFS2), and has high storage overhead
for the index (over 10%). 

This thesis considers enhancements to JFFS2 which eliminate its main deficiencies and add RAID
capability. The index is off-loaded to a more expensive non-volatile storage medium such as PRAM or
battery-backed SRAM. The added cost of the index memory is offset by the reduced storage overhead,
faster access times, and reduced complexity compared to UBIFS. The implemented RAID-based file
system, JFFSR, is compared to JFFS2, YAFFS2, and UBIFS. 


